Adjoint quasi-differential operators of Euler type
نویسندگان
چکیده
منابع مشابه
Non-self-adjoint Differential Operators
We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...
متن کاملAdjoint and self - adjoint differential operators on graphs ∗
A differential operator on a directed graph with weighted edges is characterized as a system of ordinary differential operators. A class of local operators is introduced to clarify which operators should be considered as defined on the graph. When the edge lengths have a positive lower bound, all local self-adjoint extensions of the minimal symmetric operator may be classified by boundary condi...
متن کاملAnalytic adjoint solutions for the quasi-one-dimensional Euler equations
The analytic properties of adjoint solutions are examined for the quasi-onedimensional Euler equations. For shocked flow, the derivation of the adjoint problem reveals that the adjoint variables are continuous with zero gradient at the shock, and that an internal adjoint boundary condition is required at the shock. A Green’s function approach is used to derive the analytic adjoint solutions cor...
متن کاملAdjoint Fractional Differential Expressions and Operators
In this article we present the notions of adjoint differential expressions for fractional-order differential expressions, adjoint boundary conditions for fractional differential equations, and adjoint fractional-order operators. These notions are based on new formulas obtained for various types of fractional derivatives. The introduced notions can be used in many fields of modelling and control...
متن کاملSelf-adjoint commuting differential operators of rank two
This is a survey of results on self-adjoint commuting ordinary differential operators of rank two. In particular, the action of automorphisms of the first Weyl algebra on the set of commuting differential operators with polynomial coefficients is discussed, as well as the problem of constructing algebro-geometric solutions of rank l > 1 of soliton equations. Bibliography: 59 titles.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1966
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1966.16.213